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We show that the quantum stochastic Langevin model for continuous in time measure-
ments provides an exact formulation of the von Neumann uncertainty error-disturbance
principle. Moreover, as itwas shown in the 1980s, this Markov modelinduces all stochas-
ticlinear and nonlinear equations of the phenomenological informational dynamics such
as quantum state diffusion and spontaneous localization by a simple quantum filtering
method. Here we prove that the quantum Langevin equation is equivalent to a Dirac-
type boundary-value problem for the second quantized input “offer waves from future”
in one extra dimension, and to a reduction of the algebra of the consistent histories of
past events to an Abelian subalgebra for the “trajectories of the output particles.” This
result supports the wave—particle duality in the form of the thesis of Eventum Mechanics
that everything in the future is constituted by quantized waves, everything in the past
by trajectories of the recorded particles. We demonstrate how this time arrow can be
derived from the principle of quantum causality for nondemolition continuous in time
measurements.
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1. INTRODUCTION

Quantum mechanics itself, whatever its interpretation, does not
account for the transition from “possible to the actual”

—Heisenberg

Schiddinger believed that all problems of interpretation of quantum mecha-
nics including the above problem for time arrow should be formulated in con-
tinuous time in the form of differential equations. He thought that the quantum
jump problem would have been resolved if quantum mechanics had been made
consistent with relativity theory of events and the time had been treated appro-
priately as a future—past boundary value problem of a microscopic information
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dynamics. However Einstein and Heisenberg did not believe this, each for his own
reasons.

Although Schodinger did not succeed in finding the “true Safliriger equa-
tion” so he could formulate the boundary value problem for such “eventum me-
chanics,” the analysis of the phenomenological stochastic models for quantum
diffusions and spontaneous jumps proves that&tihger was right. We shall see
that there exists indeed a boundary value problem for the “trueo8cigér equa-
tion” which corresponds to quantum jumps and diffusive trajectories which is as
continuous as Schdinger could have wished, but it is not the usual dmger,
but an ultrarelativistic (massless) Dirac-type boundary value problem in second
guantization. However Heisenberg was also right, as to take into account for these
transitions by filtering the actual past events simply as it is done in classical statis-
tics, the corresponding Dirac-type boundary value problem must be supplemented
by future-past supers-election rule for the total algebra as it follows from the
nondemolition causality principle (Belavkin, 1994). This principle demands the
arrow of time, and it cannot be formulated in the orthodox quantum mechanics
as it involves infinitely many degrees of freedom, and is yet unknown even in the
guantum field theory.

Here we shall deal with quantum white noise models which allow us to for-
mulate the most general stochastic decoherence equation which was derived in
Belavkin (1995b) from the unitary quantum Langevin equation. We shall start
with a simple quantum noise model and show that it allows us to prove the “true
Heisenberg principle” in the form of an uncertainty relation for measurement er-
rors and dynamical perturbations. The discovery of quantum thermal noise and
its white-noise approximations lead to a profound revolution not only in modern
physics but also in contemporary mathematics comparable with the discovery of
differential calculus by Newton (for a feature exposition of this, accessible for
physicists, see Gardiner (1991), the complete theory, which was mainly developed
in the 1980s (Belavkin, 1980, 1988b; Gardiner, 1985; Hudson and Parthasarthy,
1984), is sketched in the Appendix). Then we formulate the corresponding bound-
ary value problem of the Eventum Mechanics—the extended quantum mechanics
with a superselection causality rule in which there is a place for microscopic events
and trajectories. The dynamics of this event-enhanced quantum mechanics is de-
scribed by a one-parametric group of unitary propagators on an extended Hilbert
space, as in the conventional quantum mechanics, howeveessentially irre-
versiblg as the induced Heisenberg dynamics forms only a semigraapestible
endomorphismébut not of automorphisms!) in the positive arrow of time chosen
by the causality.

During the 1990s many “primary” quantum theories appeared in the theo-
retical and applied physics literature, in particular, the quantum state diffusion
theory (Gisin and Percival, 1992, 1993), where a particular type of the nonlinear
guantum filtering stochastic equation has been used without even a reference to
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the continuous measurements. The recent phenomenological models for quantum
trajectories in quantum optics (Carmichael, 1993, 1994; Goetsch and Graham,
1993, 1994; Wiseman and Milburn, 1993, 1994) are also based on the stochas-
tic solutions to quantum jump equations, although the underlying boundary value
problems of eventum mechanics and the corresponding quantum stochastic fil-
tering equations of mathematical physics remain largely unknown in the general
physics. An exception occurred only in Goetsch and Graham (1994, 1995), where
our quantum stochastic filtering theory which had been developed for these pur-
poses in the 1980s, was well understood at both a macroscopic and microscopic
level. We complete this paper by formulating and discussing the basic principles
of the eventum mechanics as microscopic time-asymmetric information dynam-
ics, which may include also classical mechanics, and which is consistent with the
guantum decoherence and quantum measurement.

2. THE TURE HEISENBERG PRINCIPLE

The first, time-continuous solution of the quantum measurement problem
(Belavkin, 1980) was motivated by analogy with the classical stochastic filtering
problem which obtains the prediction of the future for an unobservable dynamical
processx(t) by time-continuous measuring of another, observable proggss
Such problems were first considered by Wiener and Kolmogorov, who found the
solutions in the form of a causal spectral filter for a linear estiniéteof x(t),
which is optimal only in the stationary Gaussian case. The complete solution
of this problem was obtained by Stratonovich (1966) in 1958, who derived a
stochastic filtering equation giving the posterior expectatif} of x(t) in the
arbitrary Markovian pairX, y). This was really a breakthrough in the statistics of
stochastic processes which soon found many applications, in particular, for solving
the problems of stochastic control under incomplete information (it is possible that
this was one of the reasons why the Russians were so successful in launching the
rockets to the moon and other planets of the solar system in 1960s).

If X(t) is an unobservable Heisenberg process, or vector of such processes
Xk(t), k =1,...,d, which mighteven have no prior trajectories as the Heisenberg
coordinate processes of a quantum particle say,Ydhdis an actual observable
quantum processes, i.e., a sort of Bell's beable describing the vector trajgétpry
of the particle in a cloud chamber say, why do we not find the posterior trajectories
by deriving and solving a filtering equation for the posterior expectatgt)sof
X(t) or any other function oK (t), defining the posterior trajectoriegt, y;) in the
same way as we do it in the classical case? If we had a dynamical model in which
such beables existed as a nondemolition process, we could solve this problem
simply by conditioning as the statistical inference problem, predicting the future
knowing a history, i.e., a particular trajectoy{r) up to the timet. This problem
was first considered and solved by finding a nontrivial quantum stochastic model
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for the Markovian Gaussian paiK(Y). It corresponds to a quantum open linear
system with linear output channel, in particular for a quantum oscillator matched
to a quantum transmission line (Belavkin, 1980, 1985). By studying this example,
the nondemolition condition,

[Xc(8), Y(r)] =0, [Y(s),Y(N]=0 Vr<s,

was first found, and this allowed the solution in the form of the causal equation
for x(t, yg) = (X()),p-

Let us describe this exact dynamical model of the causal nondemolition mea-
surementfirstin terms of quantum white noise for a quantum nonrelativistic particle
of masamwhich is conservative, if not observed, in a potential figl@ut we shall
assume that this particle is under a time-continuous indirect observation which is
realized by measuring of its Heisenberg position operaf@r@) with additive
random errorg (t):

YE@) = Q) + (1), «=1,...,d.

We take the simplest statistical model for the error proassls the white-
noise model (the worst, completely chaotic error), assusming that it is a classical
Gaussian white noise given by the first momenta

(€M) =0, (&) =ols(s —r)sr.

The components of measurement vector-prodés$ should be commutative,
satisfying the causal nondemolition condition with respect to the noncommutative
processQ(t) (and any other Heisenberg operator-process of the particle), this can
be achieved by perturbing the particle Newton—Ehrenfest equation:

2

m e Q)+ Vo) = ().

Here f (t) is vector process of Langevin forcés perturbing the dynamics due to
the measurement, which are also assumed to be independent classical white noises

(@) =0,  (f(s)fi(r)) = a?8(s—r)st.

In classical measurement and filtering theory the white na@@@sf (t) are usu-

ally considered independent, and the intensitigsndo? can be arbitrary, even
zeros, corresponding to the ideal case of the direct unperturbing observation of the
particle trajectoryQ(t). However in quantum theory corresponding to the standard
commutation relations,

QO=0Q. $OO= P, [ A]=ihs,

the particle trajectories do not exist such that the measurement etjoaind
parturbation forcef (t) should satisfy a sort of uncertainty relation. This “true
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Heisenberg principle” had never been mathematically proved before the discovery
(Belavkin, 1980) of quantum causality in the form of nondemolition condition of
commutativity ofQ(s), as well as any other process, the momenR(t) = mQ(t)

say, with allY(r) forr < s. As we showed first in the linear case (Belavkin, 1980,
1985), and later even in the most general case (Belavkin, 1992b), these conditions
are fulfilled if and only ife(t) and f (t) satisfy the cononical commutation relations

h
[e(r), €(8)] = 0, [ (r), fi(s)] = 70 =987, [1(r), 7i(s)] = 0.

From this it follows that the paire{ f) satisfies the uncertainty relatieRo; >

h/2. This inequality constitutes the precise formulation of the true Heisenberg prin-
ciple for the square rootg ando ; of the intensities of erroz and perturbatiorf :

they are inversely proportional with the same coefficient of proportionéli®/, as

for the pair (Q, P). Note that the canonical pair {) called quantum white noise
cannot be considered classically, despite the fact that each pmaeds sepa-

rately can. This is why we need a quantum-field representation for thegpdiy, (

and the corresponding quantum stochastic calculus. Thus, a generalized matrix
mechanics for the treatment of quantum open systems under continuous nonde-
molition observation and the true Heisenberg principle was discovered 20 years
ago only after the invention of quantum white noise in (Belavkin, 1980). The non-
demolition commutativity ofY (t) with respect to the Heisenberg operators of the
open quantum system was later rediscovered for the output of quantum stochastic
fields in Gardiner and Collett (1985).

Let us outline the exact quantum stochastic model (Belavkin, 1988a, 1992b)
for a quantum particle of massin a potentialp under indirect observation of the
positionsQ* by measuringy’,. We define the output process as a quantum stochastic
Heisenberg transformatiorf = W(t)"(1 @ §t)W(t) for a time-continuous quan-
tum stochastic unitary evolutiow/(t). It has been shown in (Belavkin, 1988a,
1992b) thatW(t) is the resolving family for an appropriagpiantum stochas-
tic Schibdinger equationsee Eq. (3) below). It induces the following quantum
stochastic Heisenberg output equation:

dY! = 22.Q(t) dt + Wt = X, (t) dit + oA, @)

wherex is a coupling constant, or a diagonal matix [1,8.] defining different
accuracies of an indirect measurement at time 6f iQere X(t) = W(t)'(X ®
lo)W(t) are the system Heisenberg operators fpr=X2(1 Q)*, o, is the identity
operator in the Fock spack), andw! =y, « = 1,...,d are the standard inde-
pendent Wiener processes represented as the operatars = A (t) + Af(t)

on the Fock vacuum vectdy, € Fo such thaw! ~ W' s, (see the notations and
more about the quantum stochastic calculus in Fock space in the Appendix). This
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model coincides with the signal plus noise model given above if

th
2%, dt’

&) = 5@ +a)n =

where af (t), a“(t) are the canonical bosonic creation and annihilation field
operators,

[al(s), &" (] = 0, [a(s), &* ()] = &3t — 5), [a“(s), @_(1)] = O,

defined as the generalized derivatives of the standard quantum Brownian motions
Al (t) and A“ (t) in Fock spaceFy. It was proved in (Belavkin, 1988a, 1992b) that
Y!is a commutative nondemolition process with respect to the system Heisenberg
coordinate and momentum(t) = W(t)"(P® 1)W(t) processes if they are per-
turbed by independent Langevin forcégt) of intensityz? = (1, h)?, the gener-
alized derivatives off ~ f,8, timesa,, wheref, = i h(A< A¥)(t):

dR() + #/(QUW)dt = 1, A, R(h)=m S Q). @

Note that the quantum error operataiscommute, but they do not commute with
the perturbing quantum force operatdptsjn Fock space due to the multiplication
table

(dW)? = I dt, df d@ =ihlsF dt,
didfi = —ihls< dt, (df.)? = h?l dt.

This corresponds to the cononical commutation relations for the renormalized
derivativeswi(t) and ﬂ (t), so that the true Heisenberg principle is fulfilled at
the boundary, 7, = h/2. Thus our quantum stochastic model of nondemolition
observation is the minimal perturbation model for the given accukaoy the
continual indirect measurement of the position opera@f (the perturbation
vanishes when = 0).

3. QUANTUM STATE DIFFUSION AS INFORMATION DYNAMICS

Let us introduce the quantum stochastic wave equation for the unitary trans-
formationWy(t) = W(t) ¥, inducing Heisenberg dynamics which is described by
the quantum Langevin Eg. (2) with white-noise perturbation. This equation is well
understood in terms of the generalized derivatives

h df,
fe(®) = he—(@! —a)(0) = he 5~
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of the standard quantum Brownian motiofi5(t) and A* (t) defined by the com-
mutation relations

[AF(9), AT (1] = 0, [A(9), AT (D)] = (t A S)3f, [A“(s), AL(t)] =0

in Fock spaceFo(t A s = min{s, t}). The corresponding quantum stochastic dif-
ferential equation for the probability amplitudefr® Fy is a particular case

L,F—L%, LS =(@Qy=L"
of the general quantum diffusion wave equation,
dWo(t) + (K ® NWo(t) dt = (LY ® dAF + Ly @ dA )O)Wo(t),  (3)

which describes the unitary evolution n® Fy if K = ‘ﬁH — %L;Li, where

H = H is the evolution Hamiltonian for the systemfnUsing the quantum dt”
formula (see the Appendix), it was proven in (Belavkin, 1988a, 1992b) that it is
equivalent to the Langevin equation

dX(t) = (F(XL+ LTX) + LTXL — KTX — XK)(t) dt
+(FX +LTX = XL)(t)dA_ + (X + XL — LTX)(t)dAT  (4)

for any quantum stochastic Heisenberg process

X(t, f) = W)t (x ® exp[/: (fK(r)dw; - % f(r)? dr)D W(t),

where f“(t) are a test function for the output procegsand
K(t) = W) (K @ hW(t), L*(t) = W(t)"(L ® HW(t).

The Langevin Eq. (2) for the system coordinaté) = W(t)' - (Q® I)W(t) and
for the output processéqt, f) corresponding to X | follows straightforwardly
in the case L= AQ, H= P?/2m + ¢(Q).

In the next section we shall show that this unitary evolution is the interaction
picture for a unitary group evolutiod! corresponding to a Dirac-type boundary
value problem for a generalized SoHdifiger equation in an extended product
Hilbert space) ® G. Here we prove that the quantum stochastic evolution (3) in
h ® Fo coincides with the quantum state diffusionkinif it is considered only for
the initial product stateg ® §, with 8, being the Fock vacuum state vectotAp.

Quantum state diffusiofs a nonlinear, nonunitary, irreversible stochastic
form of quantum mechanics with trajectories put forward by Gisin and Percival
(1992, 1993) in the early 1990s as a npvimary quantum theory which includes
the diffusive reduction process into the wave equation for pure quantum states. It
has been criticized, quite rightly, as an incomplete theory which does not satisfy
the linear superposition principle for the waves, and for not explaining the origin
of irreversible dissipativity which is built into the equation “by hand.” In fact the
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“primary” equation had been derived even earlier as the posterior state diffusion
equation for pure stateg, = ¥ (w)/|¥(w)| from the linear unitary quantum
diffusion Eq. (3) by the following method as a particular type of the general
quantum filtering equation in the literature (Belavkin, 1988a, 1989; Belavkin and
Staszewski, 1992). Here we shall show only how to derive the corresponding
stochastic linear decoherence equatiomfdr, w) = V(t, w) = V(t, w)y when

all the independent increment procesgeare of the diffusive typg! = w!:

dy (t, ) + Ky (t, o) dt = LY (t, 0) dwi, ¥ (0) = . ()

Note that the resolving stochastic propagatdr, ») for this equation defines the
isometries

V()TV(t) = /V(t, o)'V(t, w)du =1

of the system Hilbert spadgnto the Wiener—HiIbertspadei of square integrable
functionals of the diffusive trajectories = {w(t)} with respect to the standard
Gaussian measuge= R, if K + K = LTL.

Let us represent these Wiener processes in the equation by opevaters ~
Al + A< onthe Fock space vacuuiy) using the unitary equivaleneg ~ W.s,in
the notation explained in the Appendix. Then the corresponding operator equation,

dir(t) + Kt dt = (L dAS + LI dAS)p(t), ¥(0)=v ®34, ¥ €,

with LT = AQ* = L* coincides with the quantum diffusion Scidinger Eq. (3),
where I =L, L = —L, on the same initial product-statdg(0) = ¥ ® Jp.
Indeed, as it was noted in Belavkin (1992b), due to the adaptedness,

Y =9 @85  Wolt) = ¥ ® 8y,

both right-hand sides of these equations coincide on future vaé&g;uifni/t =¥
as

L @l (t) = (L dAF + LT dA )@ @ 8) = Ly @ dA S,
%L’( dfedolt) = (L dAT — L, dA (W) ® 85) = LW} @ dA* S,

(the annihilation processes‘ are zero on the vacuugy). By virtue of the co-
incidence of the intial datg® = v = W} this proves thaij (t) = W(t) for all

t > 0. Note that the quantum stochastic evolutigr(s) andW(t) when extended
on the whole spack ® Gy, are described by the different propagatuné) and
W(t) asy/(t) = V(t)F, Wo(t) = W(t)Wo. The first one is unbounded and even not
well-defined on the whole spager G, while the second one is unitary, resolving
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another stochastic differential equation

dvo(t) + ([H+ 52 ) el ok = LAQ )AL, 0) = v (6)

by the unitary propagatd/(t, f) = W(t)(I ® 8,) for eachf in b as the stochastic
functiony(t, f) = W(t, f)y on another classical probability space.
Thus the stochastic decoherence equation,

au )+ (H+ 5Q4Q ) VO k= VO d, VO =V,

for the continuous observation of the position of a quantum particle with H
%PZ + ¢(Q) was derived for the unitary quantum stochastic evolution as an ex-
ample of the general decoherence equation which was obtained in this way in
Belavkin (1988b). It was explicitly solved in the literature (Belavkin, 1988a, 1989;
Belavkin and Staszewski, 1992) for the case of linear and quadratic potentials
and it was shown that this solution coincides with the optimal quantum linear fil-
tering solution obtained earlier in (Belavkin, 1980, 1985) if the initial wave packet
is Gaussian.

The nonlinear stochastic posterior equation for this particular case was derived
independently by Diosi (1988) and (as an example) in Belavkin (1988a, 1989). It
has the follwing form

dp(t) + (IEH + %@‘(t)xi@‘(t)) Y1) Gt = 2 B (1) v €) MR,

whereQ(t) = Q — G(t) with §<(t) defined as the multiplication operators by the
components|“(t, w) = ¥}, (t) Q“(t)yw(t) of the posterior expectation (statistical
prediction) of the coordinate Q, and

Wi = dw — 24, G (t) dt = dy' — R (t)dt, R (t) = 20.G)* (1)

Note that the innovating output processésafte also standard Wiener processes
with respect to the output probability measure€Tim; -, Pr(t, dw) but not with
respect to the Wiener probability measwre= Pr(0, dv) for the input noisev! .

Let us give the explicit solution of this stochastic wave equation for the
free particle ¢ = 0) in one dimension and the stationary Gaussian initial wave
packet which was found in the literature (Belavkin, 1988a, 1989; Belavkin and
Staszewski, 1992). One can show (Chruscinski and Staszewski, 1992; Kolokoltsov,
1995) that the nondemolition observation of such particle is described by filtering
of quantum noise which results in the continual collapse of any wave packet to the
Gaussian stationary one centered at the posterior expectgtion) with finite
dispersion|(G(t) — Q). (t)||2 — 2x(h/m)Y/2. This center can be found from the
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linear Newton equation

o? d s

dt22(t)+2K " Z(t) + 2¢“z(t) = —o(t),

for the deviation procesg(t) = q(t) — x(t), wherex(t) is an expected trajec-
tory of the output process (1) with(0) = go — x(0), Z(0) = vo — x’(0). Here
x = x(h/m)¥/2 is the decay rate which is also the frequency of effective oscil-
lations,qo = (X), Vo = (p/m) are the initial expectations amgft) = x”(t) is the
effective gravitation for the particle in the moving framework¢t). The solution
to the above equation illustrates the continuous collzft3e— 0 of the posterior
trajectoryq(t) towards a linear trajectory(t). The posterior position expecta-
tion q(t) in the absence of effective gravitatioxi;(t) = O, for the linear trajec-
tory x(t) = ut — q collapses to the expected input trajectm(y) with the rate
« = x(h/m)¥/2, remaining not collapsedy(t) = Vo(t) in the framework where
0o = 0, only in the classical limih/m — 0 or absence of observatian= 0. This

is the graph of

oo(t) = Vot, q(t) = ut + e *'(q coskt + (q + « (Vo — u)) sinkt) — g

obtained ag|(t) = x(t) + z(t) by explicit solving of the second-order linear equa-
tion for z(t).

4. THE EVENTUM MECHANICS REALIZATION

Finally, let us describe thieventum Mechaniasnderlying all quantum diffu-
sion and more general quantum noise Langevin models of information dynamics.
We shall see that all such phenomenological models exactly correspond to Dirac-
type boundary value problems for a Poisson flow of independent quantum particles
interacting with the quantum system under the observation at the boundaéy
of the half lineR, in an additional dimension. The second-quantized massless
Dirac equation (7) with corresponding boundary condition (8), together with the
quantum causality (or nondemolition) superselection rule, is the essence of the
Eventum Mechanics, the new, extended quantum mechanics in which there is a
place for the phenomenological events such as quantum trajectories and sponta-
neous localizations. One can think of the coordirrate 0 being perpendicular
to the quantum target membrane of a scattering measuring device, or an extra
dimension coordinate as a physical realization of localizable time imelbirane
universe. At least it is so for any free evolution Hamiltonigip) > O of the in-
coming quantum particles in the ultrarelativistic linjp) — —oo such that the
average velocity in an initial state is a finite constant; (¢'(p)) — 1 say, see
in details on this limit of an idealized rigid boundary measurement schemes in
the literature (Belavkin, 2000, 2001; Belavkin and Kolokoltsov, 2001). Thus we
are going to solve the microscopic foundation problem for quantum trajectories,
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individual decoherence, state diffusion, or permanent reduction theories as the
following time-continuous information dynamics derivation problem:

Let V(t, w) = V(t, wg]), t € Ry be a reduction family of isometries dninto h ® L2
resolving the state diffusion Eq. (5) with respect to the input probability meassr®,,
for the standard Wiener noiseg , defining the classical means

M[gV(t) BV ()] = / g(wg)v(t,wg)fsv(wg)dpw.

Find a triple G, 2, ®) consisting of a Hilbert spacé = G_ ® G, embedding the
Wiener—Hilbert space2 by an isometry intog,, an algebral =2 ® 2, on

G with an Abelian subalgebr&l_ generated by a compatible continuous family
Yf]oo ={Y,k=1,...,d,s <0} of observables orG_, and a state-vecto®°® =
®° ® ¢ e Gsuchthatthere exists atime-continuous unitary gidbpnH = h ® G,
inducing a semigroup of endomorphisfiss B - U~'BU! e B, which represents
this reduction on the product alged = B(h) @ 2 as

MIgV(®)BV ()] = 7'(§— ® B).
Herer! is the quantum conditional expectation
(@1 ®B) = (I ® d°)TU~ (B ® gt (YE{))ut(l ® 09,

which provides the dynamical realization of the reduction as the statistically causal
inference about any B B() with respect to the algebfdl_ of the functionalg)_ =
g,[(YS]I), of Y:lO] ={Y3:s e (—t, 0]}, all commuting ong, representing the shifted
measurable functionag_t(yﬂ) = g(yé]) of y(‘)] ={y" :r €(0,t]} for eacht > 0 in

the cente® of the algebrdB.

We have already dilated the state diffusion Eg. (5) to a quantum stochastic
unitary evolution//(t) resolving the quantum stochastic Safliriger Eq. (3) on the
system Hilbert) tensored with the Fock spad such thaW(t)(I ® §5) = V(t),
wheres, € Fy is the Fock vacuum vector. In fact the state diffusion equation was
first derived (Belavkin, 1988a, 1989) in this way from even more general quantum
stochastic unitary evolution which satisfies the equation

(1 ®8)"WO (B ® g(Wd))W(H)(I ® 85) = M[gV(®)BV(1)].

Indeed, this equation is satisfied for the model (3) as one can easily check for

t 1
g(w) = epr <fK(r)dw; -5 f(r)? dr)]
0
given by a test vector functiofi by conditioning the Langevin equation (4) with
respect to the vacuum vectgy:
(1 ®85)T([AX + (KTX 4+ XK = LTXL — (XL + LTX) f) dt)(I ® 8,) = 0.
Obviously this equation coincides with the conditional expectation

M[dB(t) + (KT B(t) + B(t)K — LTB(t)L — (B(t)L + LTB(t)) f(t))dt] = 0
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for the stochastic proces(t) = V(t)'gX\t) which satisfies the stochastiolt™
equation

dB + gVI(KTX + XK — LTXL — (XL + LX) f)V dt
=gVI(L™X + XL +X)V dw'.

This however does not give yet the complete solution of the quantum measurement
problem as formulated above because the alggrgenerated b ® | and the
Langevin forcesz,E does not contain the measurement proe@ssviiich do not
commute with ff, and the unitary familyW(t) does not form unitary group but

only cocycle

TtW(S)T_tW(t) = W(S + t), Vs, t > O,

with respect to the isometric but not unitary right shift semigroum Fo.

Let T, be the one parametric continuous unitary shift group/Sh® Fo
extending the definition fronf. It describes the free evolution by right shifts
D¢ (w) = ®(w — t) in Fock space over the whole life Then one can easily find
the unitary group

Ul=T(1I°® 1 @ W(t) T

on Fo ® h ® F% inducing the quantum stochastic evolution as the interaction
representatiotJ (t) = T,U! on the Hilbert spacé ® Go. In fact this evolution
corresponds to an unphysical coordinate discontinuity problem at the arigin

0 which is not invariant under the reflection of time> —t. Instead, we shall
formulate the unitary equivalent boundary value problem in the Poisson space
G = G_ ® G, for two semi-infinite strings ofR,, one is the living place for the
guantum noise generated by a Poisson flow of incoming waves of quantum particles
of the intensityv > 0, and the other one is for the outgoing classical particles
carrying the information after a unitary interaction with the measured quantum
system at the origin = 0. The probability amplitude® < G are represented by

the G® = ¢g® ® g% valued functionsb(v_, v, ) of two infinite sequences, =

{£r1, £ro, ...} C R, of the coordinates of the particles in the increasing order
ri <rp< ...suchthat

||c1>||2=// [ d(V_, vi)lI2Py (dv_) < o0

with respect to the product of two copies of the Poisson probability me&sure
defined by the constant intensity> 0 onR,. Here & is the infinite tensor
product of g= C® obtained by the completion of the linear sparxef® x> @ - - -
with almost all multipliersy, = ¢ given by a unit vectop € CY such that the
infinite product|| ®(v)|| = [T, ., | f (r)Il for ®(v) = e, f(r) with f(ry) = xnis
well defined as it has all but finite number of multipligng, | equal 1. The unitary
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transformationF — & from a Fock spacer > F to the corresponding Poisson
oneg can be written as
; F(t) amr A (), —SA) = —
® =t"lﬂoe% O gmec A3 AOF = | (p)F,

whereg, = v, for the Poisson intensity > 0 and the unit vectop = (¢")
defined by the initial probability amplitude € g for the auxiliary particles to be in
astater =1, ..., d. HereAs (t) are the QS integrators defined in the Appendix, and
the limitis taken on the dense subspaJcﬁ)]—‘é] of vacuum-adapted Fock functions
Fi € Fp and extended then ont&, by easily proved isometrijF | = ||®¢| for
o = 1L (p)F.

The free evolution igj is the left shift for the incoming waves and the right
shift for outgoing waves,

Tt(D(V,, V+) - ¢(V£, Vi)l

wherev!, = £[([(—v_) U (+v4)] — t) NR.]. Itis given by the second quantiza-
tion

h
PO(v-, vy) = — ( % -3 %) D(V_, V)

rev_

of the Dirac—Hamiltonian in one dimension &n..

To formulate the boundary value probleminthe sgdce h ® G correspond-
ing to the quantum stochastic equations of the diffusive type (3), let us introduce
the notation

D0 UV = !I\IT]O((K| Rl ®ly.. )D(&Er, £ry, £r5,...),

where(x| = d=Y/2(s%, ..., §) acts as the unit bra-vector evaluating kil pro-
jection of the state vectob(£r Livy) withr <rj <r, < ... corresponding to
the nearest to the boundary= 0 particle in one of the strings dR. .

The unitary group evolutiotJ; corresponding to the scattering interaction
at the boundary with the continuously measured system which has its own free
evolution described by the energy operato=FE' can be obtained by resolving
the following generalized Scbdinger equation,

0 i
awt(v_, v,) = EP\llt(t, Vo, Vi) 4+ GV, vy) + G W (v, OF Ly,

@
with the Dirac zero current boundary condition at the origia 0,
WO UV, vy) =G, W(v_,v;) + G w(v_, 0FLv,), Vt> 0, ve> 0.
(C)
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Here G = [G!] is unitary, G = G', the scattering operator S in the simpler
quantum jump boundary value problem corresponding o630 = G, and the
other system operatorg'@with: = —, i andk =k, +foranyi,k=1,...,dare
chosen as
i

G +vGlG=0, G;+%GT+G++E ) )
Note that these conditions can be written as pseudounitarity operator of the fol-
lowing triangular block-matrix:

| GG ] [oo 171 6G-G;]'[oo |
0OG G| =|owo 0OG G| |0 Of.
00 | | 00 00 | 10 O

As it was proved in Belavkin (1988b, 1992a) this is a necessary (and suf-
ficient if all operators are bounded) condition for the unitarity(t)* =
W(t)! of the cocycle solution resolving the quantum stochastic differential
equation

dWo(t) = (G, — 8L1) Wo(t) dAS, Wo(0) = o

inthe Hilbert spacé{y = h ® Go wheregGy isidentified with the spadg, = G® ®
Li for the Poisson measure= P, with the intensityw onRR, . This is the general
form for the quantum stochastic Eq. (3), wher&'d= dt in the Poisson space
(see the Appendix for more detailed explanations of these notations). Our recent
results partially published in the literature (Belavkin, 2000a,b, 2001; Belavkin
and Kolokoltsov, 2001) prove that this quantum stochastic evolution extended as
the identity | _ also on the componerdt_ for the scattered particles is nothing
but the interaction representatioli = T_;(I_ ® W(t)) for the unitary grougJ*
resolving our boundary value problem inp G® times the Poisson spacteﬁ.
Thus the pseudounitarity condition (9) is necessary (and sufficient if the operators
G! are bounded) for the self-adjointness of the Dirac-type boundary value problem
(7) and (8).

The generators Gof this boundary value problem define the generatgrs S
of the corresponding quantum stochastic equation in Fock space by the following
transformation,

S+ = vl/Z(GiJr + GiK(pK _ (pi), g]{ — vfl/Z(GL + ¢ G:{ N (pK)
S, =G, +¢G, +G ¢ +¢i (G, —8l)¢*, S =G

induced by the canonical transformatibye).
The quantum state diffusion equation (5) for the continuous measurement of
the coordinate®* corresponds to the particular case (2) of the quantum stochastic
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differential equation in Fock space, with
S, =v?2G,, S =vY2G,
S, =G, +¢G, +G ¢, S =41,

andG!, = Q', G, = vQ¥ such that all coupling constantg = v/? are equal to
the square root of the flow intensity The operators!, = ¢' Q' andG, = Quex
corresponding to the different couplingg can also be obtained from the purely
jump model in the central limit — oo as it was done in Belavkin and Melsheimer
(1996). In this case

S; =G - 1)k - —irg' Q'

with K = iAk/A.

And finally, we have to find the operator proces¥gss < 0, on the Hilbert
spacej_ which reproduce the standard Wiener noisgi the state diffusion when
our dynamical model is conditioned (filtered) with respect to their nondemolition
measurement. As the candidates, let us consider the field coordinate processes

X ' = AF(=t, 0]+ A“(=t, 0] = T_(A (0, t] + A“(0,t]) Tt,

which are given by the creation and annihilation proce#sds) and A_(t) shifted
from G.,. In our Poisson space model @fthey do not have zero expectations

X 1P = BT (AF(0,t] + AX(0, 1)) d = 2v/%

in the ground stat& = 1,(¢)8, corresponding to the vacuum vecy in the

Fock space. This state is given as the infinite tensor protitiet ¢® ® ¢% of all

equal probability amplitudeg_ = ¢ = ¢, in g = CY for each sequence. and

V... Hence the independent increment proce¥§es TtYk‘tT_t corresponding to

the standard Wiener noiseg represented in Fock spacesigs= A (t) + A (t)

are the compensated proces¥gs = X, ' — 2v'/?t. This unitary equivalence of

Y} andw}, under the Fock—Poisson transformatio(y), and the deduction given
above of the quantum state diffusion from the quantum stochastic signal plus noise
model (1) for continuous observation in Fock space, completes the solution of the
guantum measurement model in its rigorous formulation.

5. CONCLUSION: A QUANTUM MESSAGE FROM THE FUTURE

Recent phenomenological theories of continuous reduction, quantum state
diffusion, and quantum trajecories extended the instantaneous projection postu-
late to a certain class of continuous-in-time measurements. As was shown here,
there is no need to supplement the usual quantum mechanics with any of such
generalized reduction postulate even in the continuous time. They all have been
derived from the time-continuous unitary evolution for a generalized Dirac-type
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Schiodinger equation with a singular scattering interaction at the boundary of our
Hamiltonian model (see the recent review paper, Belavkin (2002)). The quantum
causality as a new superselection rule provides a time-continuous nondemolition
measurement in the extended system which enables to obtain the quantum state
diffusion and quantum trajectories simply by time-continuous conditioning called
guantum filtering. Our nondemolition causality principle, which was explicitly
formulated in (Belavkin, 1994), admits to select a continuous diffusive classical
process in the quantum extended world which satisfies the nondemolition con-
dition with respect to all future of the measured system. And this allows us to
obtain the continuous trajectories for quantum state diffusion by simple filtering
of quantum noise exactly as it was done in the classical statistical nonlinear filter-
ing and prediction theory. In this way we derived the quantum state diffusion of a
Gaussian wave packet already in Belavkin (1979, 1980) as the result of the solution
of quantum prediction problem by filtering the quantum white noise in a quantum
stochastic Langevin model for the continuous observation. Thus the “primary”
for the conventional quantum mechanics stochstic nonlinear irreversible quantum
state diffusion appears to be the secondary, as it should be, to the deterministic
linear unitary reversible evolution of the extended quantum mechanics contain-
ing necessarily infinite number of auxiliary particles. However quantum causality,
which defines the arrow of time by selecting what part of the reversible world
is related to the classical past and what is related to the quantum future, makes
the extended mechanics irreversible in terms of the injective semigroup of the in-
vertible Heisenberg transformations indeuced by the unitary group evolution for
the positive arrow of time. The microscopic information dynamics of this event
enhanced quantum mechanics, or Eventum Mechanics, allows the emergence of
the decoherence and the increase of entropy in a purely dynamical way without
any sort of reservoir averaging.

Summarizing, we can formulate the general principles of the Eventum Me-
chanics which unifies the classical and quantum mechanics in such a way that
there is no contradiction between the unitary evolution of the matter waves and
the phenomenological information dynamics such as quantum state diffusion or
spontaneous jumps for the events and the trajectories of the particles. This can be
described as the conventionabnstochastibut time-asymmetric quantum me-
chanics, with differentlinear operators for the observables and evolution generators
in the Hilbert space, which is minimally extended in the following way:

— It is a reversible wave mechanics of the continuous unitary group evolu-
tions in an infinite-dimensional Hilbert space.

— It has conventional interpretation for the normalized Hilbert space vectors
as state vectors (probability amplitudes).

— However not all operators, e.g., the dynamical generator (Hamiltonian),
are admissible as the potential observables.
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— Quantum causality is statistical predictability of the quantum states based
on the results of the actual measurements.

— Itimplies the choice of time arrow and an initial state which, together with
past measurement data, defines the reality.

— The actual observables (beables) must be compatible with any operator
representing a potential (future) observable.

— The Heisenberg dynamics and others symmetries induced by unitary op-
erators should be algebraically endomorphic.

— However these endomorphisms form only a semigroup on the algebra of
all observables as they may be irreversible.

Note that the classical Hamiltonian mechanics can be also described in this
way by considering only the commutative algebras of the potential observables.
Each such observable is compatible with any other and can be considered as an
actual observable, or beable. However, the Hamiltonian operator, generating a
nontrivial Liouville unitary dynamics in the corresponding Hilbert space, is not an
observable, as it does not commute with any observable which is not the integral
of motion. Nevertheless the corresponding Heisenberg dynamics, described by the
induced automorphisms of the commutative algebra, is reversible, and pure states,
describing the reality, remain pure, nondisturbed by the measurements of its ob-
servables. This is also true in the purely quantum mechanical case, in which the
Hamiltonian is an observable, as there are no events and nontrivial beables in the
conventional guantum mechanics. The only actual observables, which are compat-
ible with any Hermitian operator as a potential observable, are the constants, i.e.,
proportional to the identity operator, as the only operators, commuting with any
such observable. Their measurements do not bring new information and do not
disurb the quantum states. However any nontrivial classical-quantum Hamiltonian
interactions cannot induce a group of the reversible Heisenberg automorphisms
but only a semigroup of irreversible endomorphisms of the decomposable alge-
bra of all potential observables of the composed classical-quantum system. This
follows from the simple fact that any automorphism leaves the center of an oper-
ator algebra invariant, and thus induces the autonomous noninteracting dynamics
on the classical part of the semiclassical system. This is the only reason which
is responsible for failure of all earlier desperate attempts to build the reversible,
time-symmetric Hamiltonian theory of classical-quantum interaction which would
give a dynamical solution of the quantum decoherence and measurement prob-
lem along the line suggested by von Neumann and Bohr. There is no nontrivial
reversible classical-quantum mechanical interaction, but as we have seen, there
is a Hamiltonian irreversible interaction within the time-asymmetric Eventum
Mechanics.

The unitary solution of the described boundary value problem indeed induces
endomorphic semiclassical Hamiltonian dynamics, and in fact is underlying in
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any phenomenological reduction model (Belavkin, 2002). Note that although the
irreversible Heisenberg endomorphisms of eventum mechanics, induced by the
unitary propagators, are injective, and thus are invertible by completely positive
maps, and are not mixed, they mix the pure states over the center of the algebra.
Such mixed states, which are uniquely represented as the orthogonal mixture
over the “hidden” variables (beables), can be filtered by the measurement of the
actual observables, and this transition from the prior state corresponding to the less
definite (mixed) reality to the posterior state corresponding to a more definite (pure)
reality by the simple inference does not change the reality. This is an explanation,
in the pure dynamical terms of the eventum mechanics, of the emergence of the
decoherence and the reductions due to the measurement, which has no explanation
in the conventional classical and quantum mechanics.

Our mathematical formulation of the eventum mechanics as the extended
quantum mechanics equipped with the quantum causality to allow events and tra-
jectories in the theory, is just as continuous as 8dimger could have wished.
However, it does not exclude the jumps which only appear in the singular interac-
tion picture, which are there as a part of the theory, not only of its interpretation.
Although Schodinger himself did not believe in quantum jumps, he tried several
times, although unsuccessfully, to obtain the continuous reduction from a general-
ized, relativistic, “true Scluadinger” equation. He envisaged that “if one introduces
two symmetric systems of waves, which are traveling in opposite directions; one of
them presumably has something to do with the known (or supposed to be known)
state of the system at a later point in time” (&ttiriger, 1931), then it would be
possible to derive the “verdammte Quantenspringerei” for the opposite wave as
a solution of the future-past boundary value problem. This desire coincides with
the “transactional” attempt of interpretation of quantum mechanics suggested in
Cramer (1986) on the basis that the relativistic wave equation yields in the nonrel-
ativistic limit two Schodinger-type equations, one of which is the time-reversed
version of the usual equation:

The state vectoy of the quantum mechanical formalism is a real physical wave with
spatial extension and it is identical with the initial “offer wave” of the transaction. The
particle (photon, electron, etc.) and the collapsed state vector are identical with the
completed transaction.

There was no proof of this conjecture, and now we know that it is not even possible
to derive the quantum state diffusions, spontaneous jumps, and single reductions
from models involving only a finite particle state vectgré) satisfying the con-
ventional Schodinger equation.

Our new approach, based on the exactly solvable boundary value problems for
infinite particle states described in this paper, resolves the problem formulated by
Schidinger. And thus it resolves the old problem of interpretation of the quantum
theory, together with its infamous paradoxes, in a constructive way by giving exact
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nontrivial models for allowing the mathematical analysis of quantum observation
processes determining the phenomenological coupling constants and the reality
underlying these paradoxes. Conceptually it is based upon a new idea of quantum
causality called the nondemolition principle (Belavkin, 1994) which divides the
world into the classical past, forming the consistent histories, and the quantum
future, the state of which is predictable for each such history.

6. APPENDIX: SYMBOLIC QUANTUM CALCULUS AND
STOCHASTIC DIFFERENTIAL EQUATIONS

To formulate the differential nondemolition causality condition and to derive
a filtering equation for the posterior states in the time-continuous case, we need
guantum stochastic calculus.

The classical differential calculus for the infinitesimal increments

dx = x(t + dt) — x(t)

became generally accepted only after Newton gave a simple algebraictdéle-(d

0 for the formal computations of the differentials fbr smooth trajectoriet —

X(t). In the complex plané&C of phase space it can be represented by a one-
dimensional algebra = Cd; of the elements = ad; with involutiona* = ad;.

Here
0 1 1 .
d = 0 ol™ E(Ux‘i"ffy)
for dt is the nilpotent matrix, which can be regarded as Hermitfas: d; with
respect to the Minkowski metricg|¢) = 2%z.z, in C2.

This formal rule was generalized to nonsmooth paths early in the last century
in order to include the calculus of forward differentia¥g d- (dt)/2 for continuous
diffusionsw; which have no derivative at anty and the forward differentials
dn € {0, 1} for left continuous counting trajectori@s which have zero derivative
for almost allt (except the points of discontinuity where e 1). The first is
usually done by adding the rules

(dw)? = dt, dw dt = 0 = dt dw

in formal computations of continuous trajectories having the first-order forward
differentials &k = «dt + gdw with the diffusive part given by the increments of
standard Brownian pathe. The second can be done by adding the rules

(dn)?>=dn, dndt=0=dtdn

in formal computatious of left continuous and smooth for almost &#jectories
having the forward differentialsxd= «adt + ydm with jumping part given by the
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increments of standard compensated Poisson patesn; — t. These rules were
developed by b(1951) into the form of a stochastic calculus.

The linear span of dt andadforms the Wiener-tt"algebrab = Cdt + Cd,,
while the linear span oftdand dh forms the Poisson-dtalgebra = Cd; + Cd,
with the second-order nilpotent,d= d;, and the idempotent,d= d;,. They are
represented together with by the triangular Hermitian matrices

0 0 1 010 010
d=(0 0 O0f, dy=|0 0 1}, dhn=1(0 1 1},
0 0O 0 0 O 0 0O

on the Minkowski spac&? with respect to the inner Minkowski produatf) =
zz +22+z.z",wherez* =z_,, —(—, 0,+) = (+, 0, —).
Although both algebrals andc are commutative, the matrix algelr@ener-
ated byb andc on C2 is not
0 1 1 0 01
dydn=1]0 0 O[#]|0 0 1| =dydy.
0 0O 0 0O

The four-dimensionat-algebraa = Cd; + Cd_ + Cd* + Cd of triangular matri-
ces with the canonical basis

010 0 0O 0 0O
d=|0 0 0|, d=|0 0 1|, d=|0 1 O
0 0O 0 0O 0 0O
given by the algebraic combinations,
d—zdwdm_dt: d+=dmdw_dt, d=dm_dWy

is the canonical representation of the differentialgebra for one-dimensional
vacuum noise in the unified quantum stochastic calculus (Belavkin, 1988b, 1992a).
It realizes the HP (Hudson—Parthasarathy) table (Hudson and Parthasarathy, 1984)

dA_dA* =dt, dA_dA=dA_, dAdA", (dA)?=dA,

with products equal zero for all other paris, for the multiplication of the canon-
ical counting dA = A(d), creation dA™ = A(d*), annihilation dA_ = A(d_), and
preservationtl= A(d;) quantum stochastic integrators in Fock space b¥¢€R ).

As was proved recently in Belavkin (1998), any generalizedlgebra describing

a quantum noise can be represented in the canonical way-asilzalgebra of a
guantum vacuum algebra

dA’;dAL” = SfdA;, Lpwe{—1,...,d}; k,ve{l,...,d,+},
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in the Fock space with several degrees of freedhmvhere A" = dt andd
is restricted by the doubled dimensionality of quantum noise (could be infinite),
similar to the representation of every semiclassical system with a given state as
a subsystem of quantum system with a pure state. Note that in this quaestum It”
product formulas’. = 0 if : = 4+ ork = — assg. # 0 only when = «.

The quantum k"product gives an explicit form

dyyt +ydyt +dy vl = (v’ + v +ala)). dAL
of the term drdy T for the adjoint quantum stochastic differentials
dy =o' dA,  dyf =a dAY,
for evaluation of the product differential

d@y") = (¥ +dy)(y +dy)f —yy .
Herea*, = oﬂ is the quantum tiinvolution with respect to the switch(—, +) =
(+,-),—(,...,d)=(1,...,d), introduced in Belavkin (1988b), and the Ein-
stein summation is always understood ovet 1,...,d, +;:=—1,...,d; and
k=1,...,d. This is the universal &tproduct formula which lies in the heart
of the general quantum stochastic calculus (Belavkin, 1988b, 1992a) unifying
the 1t classical stochastic calculi with respect to the Wiener and Poisson noises
and the quantum differential calculi (Gardiner and Collett, 1985; Hudson and
Parthasarathy, 1984) based on the particular types of quaniiatgibras for the
vacuum or finite temperature noises. It was also extended to the form of quan-
tum functional I formula and even for the quantum nonadapted case in Belavkin
(1991, 1993).

Every stationary classical (real or complex) proodss > 0, withx® = 0and
independentincrement$t® — x' has mean valugd[x'] = At. The compensated
processy' = x' — At, which is called noise, has an operator representafion
Fock spaceF, the Hilbert spacé.2(R ) in the form of the integral with respect to
basic processea, AL, A; such thatF = f(X)ég ~ f(x) in terms of thel 2—

Fock isomorphisnf < F of the chaos expansions

f(x) = i/mfo«l«..«n Fry,...rp)dy" = f F(v) dy”

of the stochastic functionalf € Li having the finite second momen| f |] =

| FII? and the Fock vector € Fo. The expectations of the Fock operatdi)
given by the iterated stochastic integrdlscoincides on the vauum state-vector
3 € F with their expectation given by the probability measure

ML (X)] = (5al f (X)3g) = H(D).

If its differential increments xf form a two-dimensional tt"algebraX' can be
represented in the form of a commutative combination of the three basic quantum
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stochastic increments = A3, A_ = A°, At = Al. The It formula for the pro-
cessx! given by the quantum stochastic differential

d' =adA+a dA_ + o dA+ dy + o] dt
can be obtained from the HP product (Hudson and Parthasarathy, 1984)
dxlds!t = e’ dA+ @ o' dA_ + aa T dAT + a1 dt.

The noiseg/; = x{ — Akt with stationary independent increments are called
standard if they have the standard varialféx!)?] = t. In this case

I = (AY + A + 8 A1) = axmi + (1 — e)wj,

wheregy > 0 is defined by the equation Xg)? — dt = edx{. Such, and indeed
higher dimensional, quantum noises for continuous measurements in quantum
optics were considered in Durat al. (1992) and Gardinest al. (1992)..

The general form of a quantum stochastic decoherence equation, based on
the canonical representation of the arbitraoydtjebra for a quantum noise in the
vacuum ofd degrees of freedom, can be written as

dyr(t) = (S, — 8L1)dA (), V() =Yy ®dp, ¥ €h.

HereL, are the operators in the system Hilbert spieey with S;~S{ = 0 for
the mean-square normalization

Y)Y ) = My, )vt, ) =vy

with respect to the vacuum of Fock space of the quantum noise, where the Einstein

summation is understood over al= —, 1, ..., d, + with the agreement
SS=I=sf, s=0=5, j=1...d

ands, = 1 forall coinciding, « € {—, 1,...,d, +} suchthatk =S, —§ =0

whenever = + ork = —. Inthe notations § =L/, S, = —K, S; =—Kj,j=

1,...,d, the decoherence wave equation takes the standard form (Belavkin, 1995,

1997)

dy (1) + (Kdt + KjdAL) (1) = (LIdAT + (S, — 8.1) dAK) (1),

whereAj+(t), Al AX(t) are respectively the canonical creation, annihilation and
exchange processes in Fock space, and the normalization condition is written as
LiL¥ = K + KT with Li = L* (the Einstein summationis ovierj, k = 1, ..., d).

Using the quantum é&tformula, one can obtain the corresponding equation
for the quantum stochastic density operates ¥ which is the particular case
k =—,1,...,d, + of the general quantum stochastic Master equation

do(t) = (S,0()S — o(1)s,)dAT,  6(0) = p,
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where the summation over = —, k, + is extended to infinite number &f =

1, 2,.... This general form of the decoherence equation withLl{ = O cor-
responding to the normalization conditig(t)) = Trp in the vacuum mean,
was recently derived in terms of quantum stochastic completely positive maps
in Belavkin (1995, 1997). Denoting L= —K,, L = —K' such that K=K,

this can be written as

do(t) + KH(t) dAS + (K AT = (LLa(t)L} — o(t)s.) dAS,
or in the notation above, K= K, K~ = K, Lk = LK i~ = L, L' =L as
do(t) + (Ka(t) + oK' — Li(t)L) dt = (SLa®)s!' — a(t)s)) dAS
+(SaML; — K1) dAS + (LIg)S]' — a()K') dAk,

with K+ Kf =L;LJ, LI = LJT, L for any number ofj’s and arbitrary K =
KJT, k i,j,k=1,...,d. This is the quantum stochastic generalization of the

general form (Belavkin, 1988a) for the nonstochastic (Lindblad) Master equation
corresponding to the cagk= 0. In the casal > 0 with pseudounitary block-

matrix S= [S.];==%7, inthe sens&* = S, it gives the general form of quantum
stochastic Langevin equation corresponding to the HP unitary evolutiof(fgr
(Hudson and Parthasarathy, 1984).

The nonlinear form of this decoherence equation for the exactly normalized
density operatop(t) = @(t)/Trh@(t) was obtained for different commutativeIt™
algebras in the literature (Barchielli and Belavkin, 1991; Belavkin, 1990c, 1992a).
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